Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.

نویسنده

  • Bruce A Carlson
چکیده

Mormyrid fish generate weak electric organ discharges (EODs) used for communication and navigation. EODs are initiated in the medullary command nucleus (CN), which receives dense projections from the mesencephalic precommand nucleus (PCN) and the adjacent thalamic dorsal posterior nucleus (DP), plus a minor projection from the ventral edge of the toral ventroposterior nucleus (VPv). The dorsal region of the ventroposterior nucleus (VPd) projects to DP-PCN and receives input from the electric organ corollary discharge pathway. I recorded extracellularly from single units within DP-PCN and VPd and correlated their activity patterns with electromotor output to generate hypotheses on electromotor control mechanisms. DP-PCN neurons show an oscillatory pattern of activity, firing within a window of 10-200 msec before each EOD, while remaining silent for 50-150 msec after each EOD. VPd neurons only fire during the silent period of DP-PCN neurons, suggesting that they provide recurrent inhibition to DP-PCN. During "scallops", only DP-PCN neurons with high baseline firing rates increase their activity, whereas during "accelerations", only neurons with low baseline firing rates show a strong increase in activity. Thus, the generation of different displays likely results from the activation of different groups of neurons projecting to CN. The activity of VPd neurons decreases during both displays, suggesting that disinhibition plays an important role in their generation. The mormyrid electromotor network shares many functional properties with central pattern generators (CPGs) found in relatively simple motor systems, indicating that it may be an excellent model system for studying CPG function in vertebrate communication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the role of modifiable recurrent inhibition.

Like all mormyrid fish, Brienomyrus brachyistius produces an electric organ discharge (EOD) with a constant waveform and variable sequence of pulse intervals (SPI). Periodic bursts fall into two display categories termed 'scallops' and 'accelerations', with a third category termed 'rasps' that appears to combine the two. The medullary EOD command nucleus (CN) receives excitatory input from the ...

متن کامل

The midbrain precommand nucleus of the mormyrid electromotor network.

The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed time relationship to the electric orga...

متن کامل

Neural command of electromotor output in mormyrids

The electric discharge of mormyrid fish has an irregular pattern controlled by the electromotor command nucleus in the medulla. Anatomical studies suggest that much of the descending information integrated by the command nucleus comes from the diencephalic precommand nucleus. But field potentials related to the motor command occur later in the precommand nucleus than in the command nucleus, sug...

متن کامل

Electrical and behavioral courtship displays in the mormyrid fish Brienomyrus brachyistius.

Mormyrid electric fish rely on the waveform of their electric organ discharges (EODs) for communicating species, sex, and social status, while they use the sequences of pulse intervals (SPIs) for communicating rapidly changing behavioral states and motivation. Little is known of electric signaling during courtship behavior because of two major difficulties: (1) the fish are not easily bred in c...

متن کامل

Neuroanatomy of the mormyrid electromotor control system.

Mormyrid fish produce a diverse range of electric signals that are under the control of a central electromotor network. The anatomical organization of this network was delineated by injecting biotinylated compounds into neurophysiologically identified nuclei. Previous work using retrograde labeling with horseradish peroxidase indicated that the medullary command nucleus (CN) receives inputs fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 31  شماره 

صفحات  -

تاریخ انتشار 2003